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The usefulness of Buerger's geometrical treatment for the deduction of the phases associated with 
symmetry-related reciprocal-lattice points is illustrated by the derivation of the phase relations 
between reflexions hkl and ~hl for the 68 space groups of the tetragonal system. This information is 
supplementary to that given in International Tables for X-ray Crystallography. Its use in data process- 
ing for Fotu'ier summation is illustrated. 

Introduction 

The independent development of the symmetry of 
reciprocal space given in the paper by Bienenstock & 
Ewald (1962) is a landmark in the theoretical develop- 
ment of crystallography. However, the reference to 
the method developed by Buerger (1949), for deducing 
the symmetry of the reciprocal lattice with points 
weighted with the structure factors, does less than 
justice to its practical importance. The method is not, 
as stated, based on deductions from the explicit 
structure factor expressions but on the type and 
arrangement of the space-group symmetry elements 
as laid out in the diagrams of Vol. I of International 
Tables for X-ray Crystallography (1952). 

These diagrams are necessarily familiar to crystallo- 
graphers and a method which uses them as a starting 
point has considerable practical advantages. 

To illustrate the power and simplicity of the method 
the symmetry relations between reciprocal-lattice 
points hlcl and Tchl for the 68 space groups of the 
tetragonal system are derived and listed below. 
These relations are not given in the International Tables 
and at present have a practical importance in com- 
puting Fourier syntheses. 

The absolute values of F~k~ are related by the 
Laue symmetry elements (the point-group symmetry 
+ a centre if not already present) passing through 
the origin of the reciprocal lattice. If the corresponding 
space-group symmetry elements also pass through the 
origin and have no translation components, then the 
phases of the F 's  are related by the point-group sym- 
metry (as distinct from the Laue symmetry, when 
these differ). In addition, ahk~------a~ in all cases.* 
If, however, the space-group symmetry elements 
contain translational components or do not pass 
through the origin, then the symmetry of the phases 
becomes more complicated and, in particular, depends 
on the indices hlcl. 

The essential problem of reciprocal-lattice sym- 
metry is, therefore, the relation between phases in 
such cases. 

* Phase differences arising from anomalous dispersion are, 
of course, excluded from this discussion. 

By application of Buerger's method to an axis of 
symmetry parallel to c which cuts the ab plane at 
xa+yb, the relation between the reciprocal lattice 
point hkl and its symmetry axis equivalent h'kT 
reduces to : 

ah'k'~" =ahkZ + 27~{Pllq + (h'-- h )x + (lc'- /c)y} 

where p is the power of the operation of the symmetry 
axis and c/q is the translation component. 

This expression can be readily adapted to other 
symmetry elements, but is the relevant form for the 
present purpose. 

Application to the tetragonal space groups 

For the points hlcl, ~hl, related by a 90 ° rotation 
about a tetrad axis (a right-handed rotation of a 
screw axis, if the translation is upwards) and the 
relevant values of x and y, we have: 

a~kz=ah~z+(nl--2k)½:~ for x=y=¼ 
=ah~:z+(nl-2h)½7c for x--L, y = - t  
=ah~+(nl-h-k)½7~ for x=~, y -  0 
=ahkt+(nl+2h-2lc)½7~ for x=0 ,  y= ½ 

n = 0  for a 4 axis; 1 for 41; 2 for 42; 3 for 43 axes. 
For a 4 axis at the origin, point-group symmetry 
combined with a~7~ = -ah~z gives a~h~ = -abel.  A 4 axis 
displaced from the origin should not be used in 
determining phase symmetry because the movement 
of the inversion centre is involved as well as the 
position of the axis. In such cases another fourfold 
axis can always be found for determining phase 
symmetry. In the body-centred space groups, both 
4t and 43 axes may be found and it is essential to 
distinguish which is being used for the derivation of 
the symmetry relation. 

Using these expressions, the phase relations for 
all the space groups can be written down by inspection 
of the diagrams of the symmetry elements. 

Table 1 gives these relations as derived directly 
from the above expressions. In Table 2 the relations 
have been reduced to the most convenient form and 
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Table 1. Phase relations for tetragonal space groups 

no. hkl 

1 

2 O~ - - 0 ;  

Phase angle 
~N 

-khl 

3 ~ a+lct]2 

4 o¢ a + l~  

5 ~x a + l ( 3 ~ / 2 )  

6 a a +k~r  

7 a a +  (3l--2k)½zr 

8 a a + ( l - -  k)~r 

9 a a + ( l -  h)n 

10 a a+(h - - k ) z~  

11 o¢ a + ( l + h - - k ) ~ t  

12 0¢ a + ( l - - h - - k ) ½ z t  

13 a o¢+(31--h--k)½~ 

14 o¢ o¢ + (l+ 2h-- 2/~)½~r 

15 c~ o~+(3l+2h--2k)½~r 
* 

t 

Space group numbers* 

75, 79, 83, 87, 89, 97, 99, 
100, 103, 104, 107, 108, 
123, 124, 125(422),~ 126 
(422), 127, 128, 139, 140 

81, 82, 85(5), 86(~), 88(5), 
111 to 122, 129(4m2), 
130(_4), 133(4), 134(42m_), 
138(4), 141(4m2), 142(4) 

76, 91 

77, 84, 93, 101, 105, 106, 
131, 132, 135 

78, 95 

85(1}, 125(2/m_), 126(1}, 
129(2/m), 130(1) 

80, 98, 109, 110 

133(1), 134(2/m), 137(1), 
138(Y) 

s6CY) 
9O 

94, 102, 136 

141(2/m), 142(1) 

88(Y) 
92 

96 

From Vol. I of International Tables (1952). 
The symbols in brackets after a space group number  

give the position of the origin when two alternatives are 
given in the Tables. 

extended to second- and third-power rotations for 
those cases where this is not a trivial deduction 
from the first power. In rows 7, 12 and 13, which 
contain only body-centred space groups, use has been 
made of the relation between the indices and, in 
general, the relations n -  m = n + m (modulo 2) and 
n -  2 r e = n +  2m (modulo 4) have been extensively 
used. No attempt has been made to distinguish 
between centrosymmetric and non-centrosymmetrie 

space groups. For the former, with the origin at a 
centre, a is either 0 or 7r and will take the values 
nzr/4 when the (standard) origin is not at a centre 
(International Tables, 1952, p. 356). However, all the 
space groups in rows 6, 8, 9, 12 and 13 have a centre 
at the origin and all the space groups in rows 3, 5, 7, 
10, 14 and 15 are non-centrosymmetric. The rest, 
rows 1, 2, 4 and 11, are mixed, but if the space group 
is centrosymmetrie the origin is always at a centre 
unless given otherwise. In row 2 the origins are all 
at 4 and therefore not at centres. 

An attempt to deduce the phase relationships from 
the structure-factor expressions for space group 141 
(I41/amd, origin at 2/m), for example, should convince 
anyone of the efficacy of Buerger's method. The 
checking of the relations when found is far more 
laborious than the derivation from the diagram of the 
symmetry elements. 

U s e  in F o u r i e r  s u m m a t i o n  

The main use of these and similar phase symmetry 
relations is in deriving more extensive data from the 
unique structure factors produced by a least-squares 
refinement program. This is necessary to prepare data 
for a Fourier program and may be done as an initial 
stage by the program itself (directly or by the 
equivalent modification of the summation process), 
as in the case of the Mills (1961) Fourier program 
for space groups up to No. 74 (the end of the ortho- 
rhombic space groups). If this facility is not available 
the unique data must be processed beforehand. In 
the case of Mills's Mercury program, space groups 
75 to 88, which are without symmetry elements 
along x and y, have to be reduced to monoclinie 
space groups. For space groups 85 and 86 this involves 
taking different axes, and three quadrants of the 
tetragonal reciprocal lattice are involved. For the rest, 
only a change of axis notation and the generation of 
a second tetragonal quadrant are required, apart 
from re-sorting for efficient use of the Fourier program. 
In producing programs for this data-processing, the 
different symmetry relations involved in these space 
groups can be obtained from Tables 1 and 2. 

Table 2. Phase relations r e d u c e d  to c o n v e n i e n t  f o r m  

Phase angles 

Row no "hkl ~,hl ~-kl 

6* ~ a+k~r a + ( h + k ) ~  
7~5 oc c~+ (2h+l)½g a 
8* a a +  (k + l)z~ cx + (h + k)~t 
9* a a + (h + l)~ a +  (h + k)ze 

10~ a a + ( h + k ) ~  a 
11 a a + ( h + k + l ) ~  a 
12"~ a a + (h + k + 3l)½~ a + (h + l)z~ 
13"~ a a + (h + k + l)½~ a + (h + l)~ 
145 a a +  (2h + 2k + l)½~ a + l~  
15:~ a a + (2h + 2k + 3l) ½~ a + lzc 

* All the space groups in these rows have a centre a t  the origin. 
These rows contain only body-centred space groups. No other rows except 1 and 

5 These rows contain only non-centrosymmetric space groups. 

a + h g  
a +  (2h+l)½~t 
a + (h + l)~t 
a + (k + l)z~ 
a + ( h + k ) z  
a + ( h + k + l ) g  
a + ( h + 3 k + l ) ½ ~  
a + ( 3 h + k + l ) ½ ~  
a +  (2h+ 2k+ 3l)½~ 
a +  (2h + 2k +l)½~t 

2 contain body-centred space groups. 
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Similar  considerations apply  to some degree to all  
the te t ragonal  space groups. Even  those which can 
be reduced to or thorhombic s y m m e t r y  require the 
s y m m e t r y  relations across the diagonal  plane. 

Table 3. Modification of the two parts A and B of F~t  

Case  n A h ' k T  B h" k T 

1 ~ 0 A B 
[ 1 - - A  - - B  

0 A B 
1 - - B  A 

2 2 --A --B 
3 B - - A  

3 - -  A - - B  

The p h a s e - s y m m e t r y  relat ions are of the form 

a~,k,~,=ah~z+n~ (1) 
o r  

ah'k'z'=ah~t+n½~ (2) 
o r  

~h'k'Z' = - -ah~ • (3) 

For ei ther  case (1) or (2) n is computed and  the 
result  t aken  modulo 2 for case (1) and modulo 4 for 
case (2). In  some autocode systems a logical product  
instruct ion exists to do this  directly. This  value of n 
is then  used to ins t ruct  the machine  to modify  the 
values of the two parts,  A and  B, of ~'h~ (which will  
have been fed in  as data) to produce the correct 
values for Fa,k,z,. The modificat ions are given in 
Table 3. 
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The Likelihood :Ratio Method (L:RM) for the precise and accurate determination of lattice parameters 
has been described (Beu, Musil, and Whitney, 1962) as it applies to crystals of cubic symmetry.  
This report gives the basic equations for the applications of the LRM to crystals of tetragonal and 
hexagonal symmetry. 

I n t r o d u c t i o n  

The Likelihood Rat io  Method (LRM) for the precise 
and  accurate de terminat ion  of lat t ice parameters  has 
been described (Beu, Musil & Whi tney ,  1962) as i t  
applies to crystals  of cubic symmet ry .  This report  
gives the basic equations for the appl icat ion of the 
LI~M to crystals  of te t ragonal  and  hexagonal  sym- 
metry .  To save space, the  reader  is referred to the 
previous paper  (Beu, Musil & Whi tney ,  1962) for the 

* This work was performed under Contract AT-(33-2)-1 
with the U.S. Atomic Energy Commission. 

Now at Boeing Co., New Orleans, Louisiana, U.S.A. 

defini t ion of terms not  defined in this  report  and  for 
a s ta t is t ical  analysis  of the problem. 

D i s c u s s i o n  

The development  of the LRM is given below for 
the te t ragonal  case only. The development  for the 
hexagonal  case is ident ical  if the  expression 
4/3(h~+hiki+k~) is subs t i tu ted  for (h~+k~) wherever 
the la t te r  expression appears. The development  of the 
LRM for te t ragonal  and  hexagonal  crystals  is very  
s imilar  to tha t  for cubic crystals  and  most  of the 
der ivat ion details  can be inferred from the cubic case; 


